Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The debates over the requirement ofthe International Code of Nomenclature for algae, fungi, and plants(ICNafp) for a viable specimen to represent the name-bearing type material for a species or infraspecific taxon have a long history. Taxonomy of fungi commonly studied as living cultures exemplified by yeasts and moulds, strongly depend on viable reference material. The availability of viable cultures is also particularly useful for several groups of filamentous and dimorphic fungi. While the preservation of metabolically inactive cultures is permitted and recommended by the ICNafp, there is room for improvement. Below, we review the history and current status of cultures as the name-bearing type material under theCode. We also present a roadmap with tasks to be achieved in order to establish a stable nomenclatural system that properly manages taxa typified by viable specimens. Furthermore, we propose setting up rules and defining the nomenclatural status of ex-type cultures under Chapter F, the section of the ICNafp that includes provisions specific to names of fungi.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Phytophthora is a long-established, well known and globally important genus of plant pathogens. Phylogenetic evidence has shown that the biologically distinct, obligate biotrophic downy mildews evolved from Phytophthora at least twice. Since, cladistically, this renders Phytophthora ‘paraphyletic’, it has been proposed that Phytophthora evolutionary clades be split into multiple genera (Runge et al. 2011; Crous et al. 2021; Thines et al. 2023; Thines 2024). In this letter, we review arguments for the retention of the generic name Phytophthora with a broad circumscription made by Brasier et al. (2022) and by many delegates at an open workshop organized by the American Phytopathological Society. We present our well-considered responses to this proposal in general terms and to the specific proposals for new genera; together with new information regarding the biological properties and mode of origin of the Phytophthora clades. We consider that the proposals for new genera are mostly non-rigorous and not supported by the scientific evidence. Further, given (1) the apparent lack of any distinguishing biological characteristics (synapomorphies) between the Phytophthora clades; (2) the fundamental monophyly of Phytophthora in the original Haeckelian sense; (3) the fact that paraphyly is not a justification for taxonomic splitting; and (4) the considerable likely damage to effective scientific communication and disease management from an unnecessary break-up of the genus, we report that Workshop delegates voted unanimously in favour of preserving the current generic concept and for seeking endorsement of this view by a working group of the International Commission on the Taxonomy of Fungi.more » « lessFree, publicly-accessible full text available March 12, 2026
-
ABSTRACT True fungi (Fungi) and fungus-like organisms (e.g.Mycetozoa,Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.more » « less
An official website of the United States government
